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The equation 

J,(x) YI@X> - J1tP-e Y,(x) = 0 (1) 

is of importance in the analytical solution of Reynold’s equation [ 1 ] for a tilted 
rectangular pad-slider bearing [2, 31. The parameter p (> 1) is the ratio of the inlet 
height to outlet height of the bearing. Muskat et al. [2] emphasize that in order to 
obtain reliable results for various parameters of the bearing, such as its load capacity, 
it is necessary to calculate x, (n = 1,2,...) the roots of Eq. (1) to high accuracy, i.e., 
to better than 7 decimal places for p = 10 and for low values of IZ. These authors used 
graphical interpolation and tables of J, and Y, [4, 51 to calculate x,. 

In principle, published tables of x,@) (see, e.g., [2, 6-l 11) could be stored in a 
computer and interpolation could be used to obtain x, for any given p but it would be 
better to generate x, directly, without reference to stored values,. many of which 
would probably not be needed in the interpolation. 

The solution of Eq. (1) described in this article has the following advantages: 

(1) It is simple and renders unnecessary, tedious calculation of interpolated 
values from published high-accuracy tables. 

(2) It uses the amplitude M,(x) and phase 0,(x) of first-order Bessel functions, 
thus converting the problem from finding the zeros of an oscillating function into the 
problem of finding the zero of the function f?,@x) -e,(x) - nz which has only one 
zero for a given n and p. 

(3) It uses the quadratically convergent-Newton’s method which is ideally 
suited to finding the zero of the new nonoscillating function but which is not well 
suited to finding the zeros of the original oscillatory function of Eq. (1). 

(4) The method, because of its rapid convergence and relatively small 
requirements for programme storage space is suited to small desk-top calculators or 
even programmable hand calculators. 
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THEORY 

When the Bessel functions J,(x) and Yi(x) are written in terms of their modulus 
M,(x) and their phase 0,(x), Eq. (1) becomes 

M,(x) M,@x) sin{f3,@x) - B,(x)} = 0, (2) 

whose solution for x- and p-finite is 

4@X,) - e,(q) = nn, n = 1, 2, 3 ,... . (3) 

Equation (3) and, hence, Eq. (1) may be solved by using the Newton iteration [ 9, 
Sec. 3.951, 

X n,m+ 1 = xn,m - vw,,,) - wx,,,) - ~mwx,.,) - 4(x,,,)), (4) 

where x,,, is the mth approximation to x,. Use of [9, Eq. 9.2.211 for e;(x) gives 

(5) 

This simplification is particularly desirable because it means that only amplitudes 
and phases are required for the final iteration (Eq. (5)). If (1) were to be solved using 
Newton’s iteration, then it would be necessary to calculate the four functions J,, J;, 
Y,, Y; instead of the two required for the present method. Of the various approx- 
imations available for Bessel functions [9, 12, 131 those of [9, Sets. 9.4.4-9.4.61 
were used in the present work because they give M,(x) and e,(x) explicitly for x > 3. 
When x < 3 approximations for J,(x) and Y,(x) are given and these are easily 
converted to M,(x) and B,(x) using standard techniques. 

A suitable starting value x,,i for iteration (5) is 

X n,l = W@ - 1) (6) 

which, in fact, is the first term of McMahon’s approximation for x, ([9, Sets. 9.5.28 
and 9.5.29; 141). 

Error analysis based on simple calculus expansions shows that the error E, 
introduced into x, by the use of the approximations for M,(x) and e,(x) [ 91 is 

E, Q 6 x 10-*x,/n. 

This accuracy is sufftcient for calculations on bearings. In those cases where the 
magnitude of the fourth term of the McMahon’s series expansion for x, (see [9, 
Sets. 9.5.28 and 9.5.291) was less than the eA of Bq. (7), the McMahon solution was 
of course used because of its smaller error. 

In order to decide at what point the Newton iteration should be truncated it is 
necessary to determine the minimum value of E, for a required range of p. The 
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substitution of x,, i from Eq. (6) for x, in Eq. (7) shows that E, is of order of 
6n x lo-“/@ - l), thus, in the range 1 <p < 100, which extends well beyond that 
commonly used for practical bearings, the smallest value of E, is 

(E,&” = 1.9 x 1o-g, 1 <p< 100. (8) 

When the notation of Scarborough [ 151 is adapted to the present article it follows 
that 

EN=Ixn,m+I - %I G 1@/2f’(xn,m))(xn,m+ I - X”,JJ219 (9) 

where E, is the error due to truncation of Newton’s iteration at x,,,+ I and ,u is the 
maximum value of f”(x) in the interval x,,, to x,. For the present purpose it is 
sufficient to set p =f”(xn,m+ i ). With this substitution it is found that 

&N= bn,m+~ -%mI ~0.5fk,m+1 --%m)*~ 1 <p,<lOO. (10) 

The minimum error given in Eq. (8) is set by the approximations used for M,(x) and 
B,(x), but E,,, can be made as small as required (subject, of course, to rounding errors) 
simply by increasing m. It was decided to stop iteration (5) when 

Ix”,m+I -xn,mI G lo-5Y (11) 

thus ensuring from (10) that 

EN < 5.8 x lo-“, 1 <p< 100, (12) 

i.e., eN < (E~),,,~” (see Eq. (8)). For those roots which required the use of Newton’s 
iteration it was found that truncation criterion (11) was fulfilled by the vast majority 
of the roots after two iterations. In some cases three iterations were needed to 
determine the first root x, to the required accuracy. 

In the slider-bearing problem, p is greater than unity, however, tables of x, exist for 
0 < p < 1 [7, 8, 10, 111, thus it is of interest to relate the present work to the case 
p < 1. This is easily done by the transformation 

in which case (1) becomes 

II = l//T Y=Px (13) 

Jl(VYY) Y,(Y) -JAY) Y,(rlY) = 0. (14) 

The solutions x, @ > 1) of (1) can easily be transformed to the solutions y,, (II < 1) 
of (14) simply by using (13). When this was done so as to obtain y,, in the range 
0.01 < q < 0.99 it was found that the results agreed to 7 decimals or better with the 
lO-decimal results of Fettis and Caslin [ 10, 1 l] in accord with the error sA of 
Eq. (7). 
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CONCLUDING REMARKS 

The method of determining x, described in this article is significantly faster than 
competitive methods such as the method of false position. The values of x, are 
sufficiently accurate (7 decimals) for calculations on bearings and these calculations 
are further facilitated by the fact that tables of x,@) and tedious interpolations are 
not required. The method is so successful that it can even be used on a Hewlett- 
Packard HP65 hand calculator, each iteration requiring the use of only two double- 
sided magnetic cards. 
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